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The workhorse of modern electronic

has been the celebrated MOSFET ...
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Production Transistors Smaller
Than Virus

Si transistor in the 90nm Influenza virus
logic technology node: Source: CDC
currently in production

Courtesy: Suman Datta, Intel Corp.



Experimental 10nm Si MOS Transistor
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 10nm transistor still behaves like a transistor !
But barely... Gain<1

Courtesy: Suman Datta, Intel Corp.



Silicon Transistor Scaling and Moore’s Law
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Prognosis g

e Silicon CMOS - perhaps augmented by CNT devices — will probably
continue till 2015

e ...But cost will likely balloon
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Are there alternates? g

Discard the transistor paradigm..

“Compute” with 2 terminal nanodevices such as quantum wires and
guantum dots which are incomparably easier to fabricate

2-terminal devices will not have “gain” or “isolation between input
and output terminals” so that Boolean logic will not appropriate

Adopt radically different architectures... e.g. neural or CA

Specially appropriate for nanoelectronics... Nanodevices are rather
irreproducible and error-prone. Neural architectures work on the
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rst proposed in 1996:
P. Roychowdhury, D. B. Janesand S. Bandyopa
EE T-ED, 43, 1688 (1996)

Bandyopadhyay, V. P. Roychowdhury and D. B.
hemically self assembled nanoel ectronic comput
atworks’ in Quantum Based Devices and Systems
. Stroscio and M. Dutta, World Scientific, Sing
998), Chapter 1.
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A Self Assembled Nano-electronic
Architecture: QNN
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A 2-D array of nanoparticles on a
non-ohmic substrate whose |-V
characteristic has a non-
monotonic non-linearity, e.g. an
NDR.

Each nanoparticle is resistively
and capacitively linked to its
nearest neighbor nanoparticles

A “bottom up” approach to electronics
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4% Quantum Dot Network Circuit Model g
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Given the NDR characteristic, this architecture generates
The STM model of neural networks (associative memory)

Can do image processing with an unprecedented density of 1010
pixels/cm?

Can solve combinatorial optimization problems (exploiting single
electron charging effects), e.g. the traveling salesman problem
Boolean logic circuits (NAND and NOR gates). V. P. Roychowdhury, D
B. Janes and S. Bandyopadhyay, Proc. IEEE, 85, 574 (1997).

Mimics biological systems... replicates the Fitzhugh-Nagumo model of
Impulse propagation along nerve cell membranes
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Associative memory

CadV /dt +J4(V,) +Cd(V-V /At +Gp(V-V,) =0

CodV,/dt +J,(V,) +C,d(V-V,)/dt +G,,(V,-V,) =0
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Merits g

e Applications are realized all by hardware.. Almost no software
involved. Hence special purpose architectures and blazing fast.
e Very little power consumption.
= Pentium IV dissipates ~ 100 W/cm?2 with a device density < 10%/cm?
= QNN dissipates ~ 1-10 W/cm? with a device density of 1011/cm?
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Fabrication g
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Flat Cell
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AFM Micrograph of 50-nm linked
metal particles on NDR conductors
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Two types of NDR g

NE o >type
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Nanoscale MIS diodes g

MIS diode

Has a thyristor type
characteristic with an S-type
NDR
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S-type NDR Fg

Peak to valley
ratio = 19: 1at
300 K
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Origin of S-type non-linearity g

Alumina

Accumulation
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Circuit parameters g

e So we have the NDR and can measure the peak current and the
“slopes”
e What about
- Csi
m Gij
n Cij
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C-V characteristics Fg
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Current voltage characteristics of "‘g
few dots
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NDR piecewise mode

yar circuit model -
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Circuit parameters based on "‘g
measured values

Single dot : Riyer-gor = 640 MQ e Superdot (1 pixel = 6400 dots):
Single dot: Cinter-dot =5aF Rinter-superdot =8 MQ
Single dot: Cypsrae = 0.5 aF o Superdot: Cipier-superdot = 4 fF

Single dot: Peak current=1.5nA e« Superdot: Cgpsyae = 3.2 fF
e Superdot: Peak current = 0.1 pA

Since apixel edge should be 10 times
the wavelength of light, atypical pixel

Juantum Device Laboratory



A Quantum Dot Image Processor: "‘g
Edge detection enhancement
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A Quantum Dot Image Processor: "‘g
Horizontal/vertical line detection

Horizontal line detection
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Propagation of trigger waves g

Auto waves (1-Layer CNN)

Trigger Wave For mation

K. Karahaliloglu and S. Balkir,
“Nanostructure Array of Coupled
RTDs as Cellular Neural Network
| nternational Journal of Circuit
Theory and Applications, Vol. 31




Modifying NDR characteristics -g
with infrared illumination .

Modifying t
NDR with
lHlumination
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Conclusion g

Locally interconnected.. Only Switching speed is 0.1 psec

nearest neighbor connection Power dissipation is 0.01 nW/device
Massively fault tolerant (simulation Integration density achievable with
shows that architecture can work self assembly techniques

even if 30% of the devices fail) approaches 1 trillion devices per
Reproducibility is not necessary. sg-cm

Architecture is based on collective Far ahead of the SIA International
computational models, where the Technology Roadmap for

cooperative interactions of many Semiconductors for the year 2015
devices, acting in unison, matters.

No single device is critical. We do

antum Device Laboratory
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